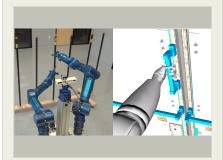
A Planning and Control Toolkit for Dual Arm Manipulation, Phase II


Completed Technology Project (2013 - 2015)

Project Introduction

It is often difficult to create autonomous robotic capabilities that match what can be achieved via teleoperation. Even though it is mechanically possible for a humanoid robot such as Robonaut 2 to perform complex coordinated tasks such as tying a knot, exchanging objects between end effectors, plugging in connectors, unscrewing a cap, opening a door, or grasping large objects with two hands, our lack of planning algorithms makes it difficult to control these behaviors autonomously. The lack of planning and control algorithms also impedes human-robot interaction as it is difficult for manipulation robots to plan arm trajectories in real-time using active sensing to avoid collisions with humans. This proposal is to develop a suite of planning and control algorithms that will enable NASA robots to perform complex manipulation behaviors in a coordinated way. This work would benefit NASA by making NASA robots more capable and useful during autonomous tasks, by enabling remote supervisors to command more complex tasks, and by enabling NASA robots to operate safely alongside humans during shared tasks.

Primary U.S. Work Locations and Key Partners

A Planning and Control Toolkit for Dual Arm Manipulation

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A Planning and Control Toolkit for Dual Arm Manipulation, Phase II

Completed Technology Project (2013 - 2015)

Organizations Performing Work	Role	Туре	Location
TRACLabs, Inc.	Lead Organization	Industry	Webster, Texas
Johnson Space Center(JSC)	Supporting Organization	NASA Center	Houston, Texas

Primary U.S. Work Locations

Texas

Images

Project Image

A Planning and Control Toolkit for Dual Arm Manipulation (https://techport.nasa.gov/imag e/134115)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

TRACLabs, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

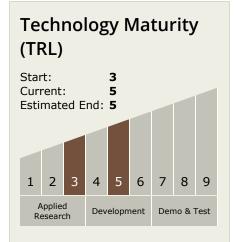
Carlos Torrez

Principal Investigator:

Robert Burridge

Co-Investigator:

Robert R Burridge



Small Business Innovation Research/Small Business Tech Transfer

A Planning and Control Toolkit for Dual Arm Manipulation, Phase II

Completed Technology Project (2013 - 2015)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

